Sie sind hier: Startseite » Markt » Tipps und Hinweise

AIOps-Ansatz liefert klare Vorteile


AIOps: Warum wir künstliche Intelligenz im IT-Betrieb brauchen
Cloud-Infrastrukturen, Serverless und Edge Computing sind nur einige Beispiele für neue Technologien, die die IT-Landschaften komplizierter machen


Über Fehler in ihrem IT-Betrieb erfahren Unternehmen heute meist dadurch, dass sich Kunden über Probleme beschweren. Eine Umfrage von AppDynamics hat ergeben, dass 58 Prozent der IT-Teams durch Anrufe oder Kunden-E-Mails über Fehlfunktionen informiert werden. Führungskräfte oder andere Mitarbeiter außerhalb der IT entdecken 55 Prozent der bekannten Probleme. 38 Prozent werden durch User Posts in sozialen Netzwerken aufgedeckt.

Natürlich wäre es für alle Beteiligten besser, wenn Unternehmen Fehler finden, bevor sich Kunden beschweren, oder sogar strukturelle Probleme so früh erkennen, dass Fehler gar nicht erst auftreten. Die enorme Komplexität heutiger Systeme und Infrastrukturen erlaubt das, zumindest auf konventionellen Wegen, nicht mehr. In einem vergleichsweise einfachen technischen System, wie einer Dampfmaschine, kann ein guter Maschinist durch regelmäßige Wartung für einen reibungslosen Betrieb sorgen. Er weiß, wo er seine Maschine schmieren muss, welche Belastungen er ihr zumuten kann und wann es Zeit wird, Verschleißteile auszutauschen. In modernen digitalen Systemen können Menschen dieses Verständnis nicht mehr erreichen.

Jede Geschäftstransaktion basiert heute auf einer immensen Zahl an Abhängigkeiten. Cloud-Infrastrukturen, Serverless und Edge Computing sind nur einige Beispiele für neue Technologien, die die IT-Landschaften komplizierter machen. Dazu kommen immer schnellere Release-Zyklen durch DevOps, immer mehr mobile Geräte und ein exponentielles Datenwachstum im Allgemeinen.

Technologie ist nicht das Problem, sondern die Lösung
Die technologische Entwicklung können und wollen wir nicht zurückdrehen. Kaum jemand möchte zurück ins Dampfzeitalter, oder wieder mit Windows 98 arbeiten. Es geht nun darum, dass wir der Komplexität im IT-Betrieb mit neunen Technologien begegnen. Dreh- und Angelpunkt des Komplexitätsproblems ist die Datenflut, vor der menschliche Analysten kapitulieren. Auch konventionelle Monitoring-Tools schaffen nur bedingt Abhilfe, da sie nur reaktives Eingreifen erlauben und von Mitarbeitern immer wieder an veränderte Situationen angepasst werden müssen.

Mit selbstlernenden Algorithmen und automatisierter Mustererkennung auf Basis künstlicher neuronaler Netze können wir heute Machine Learning realisieren. Dabei werden Daten automatisch ausgewertet, in einer Geschwindigkeit, die früher unvorstellbar schien. Diese, allgemein als Anwendungsbereich künstlicher Intelligenz charakterisierte Technologie erlaubt es außerdem, aus der Analyse großer Datenmengen belastbare Vorhersagen abzuleiten.

Künstliche Intelligenz für den IT-Betrieb (AIOps) ist die Zukunft
Mit traditionellen Methoden kann man in modernen Systemen nur Symptome verfolgen. Innovative Lösungen, wie die Cognition Engine von AppDynamics, sind dagegen in der Lage, automatisch mögliche Ursachen zu identifizieren. Das kommt einer 180-Gradwende im Application Performance Management gleich. Eine Anomalieerkennung, die auf dynamisch ermittelten Schwellenwerten (Dynamic Baselining) basiert, erkennt Probleme wesentlich schneller als traditionelle Systeme und macht eine Benutzerkonfiguration überflüssig, da sie sich im Betrieb selbst trainiert. Auch die Ursachenanalyse wird wesentlich vereinfacht. So kann das System anhand maschinell erlernter Korrelationen vom Normalzustand abweichende Kennzahlen selbstständig isolieren.

Der AIOps-Ansatz liefert Unternehmen klare Vorteile:

1. Transparenz
Die Zusammenhänge in komplexen Systemen werden verständlich. Mitarbeiter sehen in Echtzeit, wie Anwendungen performen und was im Netzwerk geschieht. Das sorgt für eine bessere Zusammenarbeit von Netzwerk- und Anwendungs-Teams.

2. Insights
Die Ursachen und Hintergründe von Problemen werden, über die Symptome hinaus, sichtbar. Das ermöglicht fundiertere datenbasierte Entscheidungen.

3. Automatisierte Aktionen
Zu AIOps gehört auch eine automatisierte Fehlerbehebung, das reicht von einfachen Benachrichtigungen, über das Ausführen von Korrektur-Scripten, bis zur selbstständigen Einrichtung einer neuen Netzwerkrichtlinie.

Fazit
Anwendungen, die aus immer komplexerem Code bestehen, laufen in immer komplexeren Netzwerken. Für Menschen ist es schlicht nicht mehr möglich, alle diese Strukturen und die riesigen Datenmengen zu überblicken, weshalb Problemlösung im IT-Betrieb leider oft Behandlung von Symptomen, statt tiefgehender Fehleranalyse bedeutet. AIOps liefert IT-Teams die Analysekapazitäten, die sie brauchen um den Durchblick zu behalten. Intelligente Mustererkennung erlaubt es sogar, Fehler zu identifizieren, bevor diese zu Problemen führen.
(AppDynamics: ra)

eingetragen: 15.03.19
Newsletterlauf: 25.03.19

AppDynamics: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

  • Ausfallkosten nur Spitze des Eisbergs

    Ungeplante Ausfälle in Rechenzentren sind seltener geworden, doch wenn sie eintreten, können sie verheerende Folgen haben. Laut der Uptime Institute Studie 2023 meldeten 55 Prozent der Betreiber in den vorangegangenen drei Jahren mindestens einen Ausfall - jeder zehnte davon war schwerwiegend oder kritisch. Zu den Ursachen gehören unter anderem Wartungsmängel, die sich mit einer strukturierten Instandhaltungsstrategie vermeiden lassen.

  • GenAI mächtig, aber nicht immer notwendig

    Jetzt auf den Hype rund um KI-Agenten aufzuspringen, klingt gerade in Zeiten des Fachkräftemangels für Unternehmen verlockend. Doch nicht alles, was glänzt, ist Gold. Viele Unternehmen investieren gerade in smarte Assistenten, Chatbots und Voicebots - allerdings scheitern einige dieser Projekte, ehe sie richtig begonnen haben: Schlecht umgesetzte KI-Agenten sorgen eher für Frust als für Effizienz, sowohl bei Kunden als auch bei den eigenen Mitarbeitern. Dabei werden immer wieder die gleichen Fehler gemacht. Besonders die folgenden drei sind leicht zu vermeiden.

  • Konsequent auf die Cloud setzen

    In der sich stetig wandelnden digitalen Welt reicht es nicht aus, mit den neuesten Technologien nur Schritt zu halten - Unternehmen müssen proaktiv handeln, um Innovationsführer zu werden. Entsprechend der neuen Studie "Driving Business Outcomes through Cost-Optimised Innovation" von SoftwareOne können Unternehmen, die gezielt ihre IT-Kosten optimieren, deutlich besser Innovationen vorantreiben und ihre Rentabilität sowie Markteinführungsgeschwindigkeit verbessern.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Der IT-Dienstleister CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • Datenschutz als Sammelbegriff

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Google Workspace trifft Microsoft 365

    Die Anforderungen an den digitalen Arbeitsplatz wachsen ständig. Wie können Unternehmen mit der Zeit gehen, ohne auf Sicherheit verzichten zu müssen? Eine Antwort könnte sein, Google Workspace an die Seite der Microsoft-365-Umgebung zu stellen. Welche Möglichkeiten eröffnet diese Kombination?

  • NIS2 trifft auf SaaS-Infrastruktur

    Die NIS2 (Network Information Security Directive)-Richtlinie zur Sicherheit von Netzwerken setzt neue Maßstäbe für die Cybersicherheit. Sie ist bekanntlich für öffentliche und private Einrichtungen in 18 Sektoren bindend, die entweder mindestens 50 Beschäftigte haben oder einen Jahresumsatz und eine Jahresbilanz von mindestens 10 Millionen Euro.

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen