Sie sind hier: Startseite » Markt » Tipps und Hinweise

Mangelware: Komplexe Machine Learning-Anwendungen


Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist
Acht Gründe, warum es maschinelles Lernen in Unternehmen schwer hat



Maschinelles Lernen (ML) hat deutliche Fortschritte gemacht. Der Streaming-Service Netflix nutzt diese Technik beispielsweise, um seinen Nutzern maßgeschneiderte TV-Angebote zu servieren, und Googles App "Arts & Culture" ist dank ML in der Lage, die Doppelgänger von Smartphone-Nutzern in weltbekannten Kunstwerken aufzuspüren. Doch wenn es um den Einsatz von Machine Learning in Unternehmen geht, sieht die Sachlage anders aus. Umfassende, komplexe Machine Learning-Applikationen sind im Unternehmensumfeld nach wie vor Mangelware. Die Application-Intelligence-Experten von AppDynamics nennen dafür acht Gründe.

1. Unklarheit, was maschinelles Lernen ist
Selbst IT-Fachleute wissen oft nicht, was unter Machine Learning zu verstehen ist. De facto heißt ML, dass mathematische Verfahren eingesetzt werden, um große Datenmengen nach Mustern zu durchsuchen. Die Algorithmen entfernen dazu störendes "Rauschen" (Noise) aus den Daten-Samples.

2. Nutzen ist nicht offenkundig
Die Stärke von ML-Algorithmen ist, dass sie sich ohne Zutun von Menschen an Systeme anpassen können, die sich verändern. Dabei sind sie in der Lage, zwischen erwarteten und anormalen Verhaltensmustern zu unterscheiden. Deshalb lässt sich maschinelles Lernen in vielen Bereichen einsetzen, etwa im Gesundheitswesen und in Sicherheitsapplikationen. Gleiches gilt für Anwendungen, die Daten klassifizieren oder Nutzern Empfehlungen geben, etwa welche Waren ihren Geschmack treffen könnten. Ein weiteres Einsatzfeld ist die Sprach- und Bilderkennung.

3. Den richtigen Einstieg finden
Unternehmen wissen oft nicht, wie sie Machine Learning implementieren sollen. Oft erfolgt das auf zwei Arten: Mitarbeiter beginnen eigenständig damit, ML für die Datenanalyse zu nutzen. Oder ein Unternehmen schafft eine Lösung an, in die ML-Algorithmen integriert sind, etwa eine Lösung für das Performance-Management von Anwendungen.

4. Daten aufbereiten
Einfach Daten zu sammeln und einen ML-Algorithmus "darüber zu jagen", funktioniert nicht. Vielmehr müssen die Daten zuvor aggregiert und um fehlende Informationsbestände ergänzt werden. Zudem ist es notwendig, "Datenmüll" zu entfernen und Informationen in die richtige Reihenfolge zu bringen.

5. Mangel an öffentlich verfügbaren, klassifizierten Daten
Erste Schritte in Richtung Machine Learning wären einfacher, würden genügend "gelabelte" Datensätze zur Verfügung stehen. Solche Informationen sind notwendig, um Machine-Learning- und Deep-Learning-Systeme zu trainieren. Leider sind solche Informationsbestände nur begrenzt verfügbar. Daher sind Unternehmen oft zu einem "Kaltstart" gezwungen, wenn sie ein ML-Projekt initiieren.

6. Domain Knowledge ist gefragt
Im Idealfall ist maschinelles Lernen die perfekte Kombination eines Algorithmus und einer Problemstellung. Das bedeutet jedoch, dass ein Machine-Learning-Fachmann "Domain Knowledge" benötigt. Das sind beispielsweise spezielle Kenntnisse über die Branche, in der ein Unternehmen aktiv ist, oder über eingesetzte Fertigungstechnologien. Auch Wissen über IT-Systeme und die Daten, die sie generieren, zählt dazu.

7. Datenspezialisten sind kein Allheilmittel
Die meisten Data Scientists sind Mathematiker. Daher verfügen sie nicht in jedem Fall über die Domain Knowledge, die für ihren Arbeitgeber relevant ist. Solche Spezialisten sollten daher mit Analysten und Domain-Experten aus dem Unternehmen zusammenarbeiten. Das erhöht jedoch die Kosten von Machine-Learning-Projekten.

8. Es fehlt eine gemeinsame "Sprache"
Bei Machine-Learning-Projekten in Unternehmen gibt es häufig keine Regeln, auf welche Weise Resultate gewonnen werden sollen. Deshalb entstehen "Silos", weil Mitarbeiter unterschiedliche Daten-Samples und Definitionen der Eingabewerte verwenden. Das wiederum hat zur Folge, dass ML-Analysen höchst unterschiedliche Ergebnisse produzieren. Solche Diskrepanzen können Zweifel am Nutzen von ML schüren.

Fazit: Keine Angst vor Machine Learning
Unternehmen, die Machine Learning einsetzen wollen, müssen somit etliche Klippen umschiffen. Dennoch sollten sie sich mit maschinellem Lernen, Deep Learning und künstlicher Intelligenz (KI) beschäftigen. Denn diese Technologien spielen bereits heute eine wichtige Rolle in Unternehmensanwendungen – und sie werden drastisch an Bedeutung gewinnen. Eine zögerliche Haltung ist somit keine gute Strategie. Denn wer den Anschluss verliert, wird dies teuer bezahlen: durch eine sinkende Wettbewerbsfähigkeit.
(AppDynamics: ra)

eingetragen: 19.06.18
Newsletterlauf: 03.07.18

AppDynamics: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • Integration von Cloud-Infrastrukturen

    Cloud-Technologien werden zum Schlüsselfaktor für Wachstum und verbesserte Skalierbarkeit über das Kerngeschäft hinaus - auch bei Telekommunikationsanbietern (Telcos). Auch hier ist der Wandel zur Nutzung von Produkten und Dienstleistungen "On-Demand" im vollen Gange, sodass Telcos ihre Geschäftsmodelle weiterentwickeln und zunehmend als Managed-Service-Provider (MSPs) und Cloud-Service-Provider (CSPs) auftreten.

  • Acht Einsatzszenarien für Industrial AI

    Artificial Intelligence (AI) entwickelt sich zunehmend zur Schlüsselressource für die Wettbewerbsfähigkeit der deutschen Industrie. Doch wie weit ist die Branche wirklich? Laut einer aktuellen Bitkom-Befragung setzen bereits 42?Prozent der Industrieunternehmen des verarbeitenden Gewerbes in Deutschland AI in ihrer Produktion ein - ein weiteres Drittel (35?Prozent) plant entsprechende Projekte.

  • Ausfallkosten nur Spitze des Eisbergs

    Ungeplante Ausfälle in Rechenzentren sind seltener geworden, doch wenn sie eintreten, können sie verheerende Folgen haben. Laut der Uptime Institute Studie 2023 meldeten 55 Prozent der Betreiber in den vorangegangenen drei Jahren mindestens einen Ausfall - jeder zehnte davon war schwerwiegend oder kritisch. Zu den Ursachen gehören unter anderem Wartungsmängel, die sich mit einer strukturierten Instandhaltungsstrategie vermeiden lassen.

  • GenAI mächtig, aber nicht immer notwendig

    Jetzt auf den Hype rund um KI-Agenten aufzuspringen, klingt gerade in Zeiten des Fachkräftemangels für Unternehmen verlockend. Doch nicht alles, was glänzt, ist Gold. Viele Unternehmen investieren gerade in smarte Assistenten, Chatbots und Voicebots - allerdings scheitern einige dieser Projekte, ehe sie richtig begonnen haben: Schlecht umgesetzte KI-Agenten sorgen eher für Frust als für Effizienz, sowohl bei Kunden als auch bei den eigenen Mitarbeitern. Dabei werden immer wieder die gleichen Fehler gemacht. Besonders die folgenden drei sind leicht zu vermeiden.

  • Konsequent auf die Cloud setzen

    In der sich stetig wandelnden digitalen Welt reicht es nicht aus, mit den neuesten Technologien nur Schritt zu halten - Unternehmen müssen proaktiv handeln, um Innovationsführer zu werden. Entsprechend der neuen Studie "Driving Business Outcomes through Cost-Optimised Innovation" von SoftwareOne können Unternehmen, die gezielt ihre IT-Kosten optimieren, deutlich besser Innovationen vorantreiben und ihre Rentabilität sowie Markteinführungsgeschwindigkeit verbessern.

  • Fünf Mythen über Managed Services

    Managed Services sind ein Erfolgsmodell. Trotzdem existieren nach wie vor einige Vorbehalte gegenüber externen IT-Services. Der IT-Dienstleister CGI beschreibt die fünf hartnäckigsten Mythen und erklärt, warum diese längst überholt sind.

  • Datenschutz als Sammelbegriff

    Die Cloud hat sich längst zu einem neuen IT-Standard entwickelt. Ihr Einsatz bringt allerdings neue Herausforderungen mit sich - insbesondere im Hinblick auf geopolitische Risiken und die Gefahr einseitiger Abhängigkeiten. Klar ist: Unternehmen, Behörden und Betreiber kritischer Infrastrukturen benötigen eine kompromisslose Datensouveränität. Materna Virtual Solution zeigt, welche zentralen Komponenten dabei entscheidend sind.

  • Google Workspace trifft Microsoft 365

    Die Anforderungen an den digitalen Arbeitsplatz wachsen ständig. Wie können Unternehmen mit der Zeit gehen, ohne auf Sicherheit verzichten zu müssen? Eine Antwort könnte sein, Google Workspace an die Seite der Microsoft-365-Umgebung zu stellen. Welche Möglichkeiten eröffnet diese Kombination?

  • NIS2 trifft auf SaaS-Infrastruktur

    Die NIS2 (Network Information Security Directive)-Richtlinie zur Sicherheit von Netzwerken setzt neue Maßstäbe für die Cybersicherheit. Sie ist bekanntlich für öffentliche und private Einrichtungen in 18 Sektoren bindend, die entweder mindestens 50 Beschäftigte haben oder einen Jahresumsatz und eine Jahresbilanz von mindestens 10 Millionen Euro.

  • Sicher modernisieren & Daten schützen

    Viele Unternehmen haben die Cloud-Migration ihrer SAP-Landschaften lange Zeit aufgeschoben. ERP-Anwendungslandschaften, sind über viele Jahre hinweg gewachsen, die Verflechtungen vielfältig, die Datenmengen enorm und die Abhängigkeit der Business Continuity von diesen Systemen gigantisch. Dennoch: Der Druck zur ERP-Modernisierung steigt und viele Unternehmen werden 2025 das Projekt Cloud-Migration mit RISE with SAP angehen.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen