- Anzeige -


Sie sind hier: Startseite » Markt » Unternehmen

KI-Dienste bringen Intelligenz in alle Apps


Amazon Web Services (AWS) hat auf ihrer Konferenz "AWS re:Invent 2018" in Las Vegas eine Reihe an Neuheiten vorgestellt
13 neue Machine-Learning-Dienste und -Funktionalitäten

- Anzeigen -





AWS hat 13 neue Dienste und Funktionalitäten über alle Schichten des AWS Machine-Learning (ML)-Angebots hinweg angekündigt und legt damit ML noch stärker in die Hände der Entwickler. Hierzu zählen u.a. eine neue Infrastruktur, ein eigener Machine-Learning-Chip und verbesserte Frameworks für schnelleres Training und kostengünstigere Inferenz.

Neue Amazon Elastic Compute Cloud (EC2) GPU Instanzen: Mit acht NVIDIA V100 GPUs, 32GB GPU-Speicher, schnellem NVMe-Massenspeicher, 96 Intel "Skylake” vCPUs und 100Gbps-Netzwerkadaptern sind die neuen P3dn.24x-Instanzen die leistungsfähigsten in der Cloud verfügbaren Instanzen, mit denen Entwickler Modelle mit mehr Daten in kürzerer Zeit trainieren können.

AWS-optimiertes TensorFlow Framework: Das AWS-optimierte TensorFlow verbessert die Art und Weise, wie TensorFlow Trainingsaufgaben auf die GPUs verteilt und erlaubt so schnellere ML-Trainings. Dadurch erreicht es eine 90-prozentige Effizienz beim Training auf 256 GPUs gegenüber dem früheren Wert von 65 Prozent. Mit diesem Framework und den neuen P3dn-Instanzen kann man das populäre ResNet-50-Modell in nur 14 Minuten trainieren, ein neuer Rekord und 50 Prozent schneller als die bisherige Bestzeit.

Amazon Elastic Inference: Amazon Elastic Inference ermöglicht es Entwicklern, die Kosten für Inferenz drastisch zu senken und Einsparungen bis zu 75 Prozent im Vergleich zu den Kosten für die Verwendung einer dedizierten GPU-Instanz zu erzielen.

AWS Inferentia: Für größere Workloads, die ganze GPUs oder geringere Latenz benötigen, hat AWS einen leistungsstarken, selbstentwickelten Chip für ML-Inferenzen angekündigt, der Hunderte von Teraflops pro Chip und Tausende von Teraflops pro EC2-Instanz liefert und mehrere Frameworks wie TensorFlow, Apache MXNet und PyTorch sowie verschiedene Datentypen wie INT-8, mixed precision FP-16 und bfloat16 unterstützt.

Neue Amazon SageMaker Funktionalitäten für vereinfachtes Erstellen, Trainieren und Bereitstellen von ML-Modellen;
AWS DeepRacer, ein durch Reinforcement Learning betriebenes autonomes Rennauto im Maßstab 1:18 für Entwickler.

Amazon SageMaker Ground Truth:
Amazon SageMaker Ground Truth vereinfacht die Zuordnung von Merkmalen zu Daten ("Labeling") für die Aufbereitung von Trainingsdaten für maschinelles Lernen. Dabei können Entwickler auf einfache Weise ihre Daten mit Hilfe von menschlichen Annotatoren über Mechanical Turk, Drittanbieter oder eigene Mitarbeiter kennzeichnen. Amazon SageMaker Ground Truth lernt in Echtzeit aus diesen Annotationen, kann einen Großteil des verbleibenden Datensatzes automatisch kennzeichnen und reduziert damit die Notwendigkeit einer menschlichen Überprüfung. Es erstellt hochpräzise Trainingsdatensätze, spart Zeit und Komplexität und reduziert die Kosten um bis zu 70 Prozent im Vergleich zu rein menschlicher Annotation.

AWS Marketplace for Machine Learning: Dieser Marktplatz umfasst über 150 Algorithmen und Modelle (deren Zahl täglich wächst), die direkt auf Amazon SageMaker bereitgestellt und daraus von Entwicklern verwendet werden können.

Amazon SageMaker RL: Amazon SageMaker RL ist der erste Cloud Service für Reinforcement Learning (RL), bei dem Modelle ohne die Notwendigkeit großer Datenmengen trainiert werden können, wenn die Nutzenfunktion bekannt, aber der Pfad für ihre Realisierung schwer zu bestimmen ist. Er ermöglicht es jedem Entwickler, Machine Learning (ML) Anwendungen mithilfe von Reinforcement Learning Algorithmen zu bauen, zu trainieren und zu betreiben. Dabei werden verschiedene Frameworks wie Intel Coach und Ray RL unterstützt, sowie Simulations-Umgebungen wie SimuLink, MatLab und der neue Robotik-Service AWS RoboMaker.

AWS DeepRacer: In nur wenigen Zeilen Code können Entwickler mit AWS DeepRacer, einem vollständig autonomen Rennauto im Maßstab 1:18, Reinforcement Learning (RL) ausprobieren. Das Auto fährt mit Hilfe von RL-Modellen, die mit Amazon SageMaker trainiert wurden. In der DeepRacer League, der ersten weltweiten autonomen Rennliga, können Entwickler ihre Fähigkeiten unter Beweis stellen und mit ihren Autos und Modellen gegen andere antreten.

Amazon SageMaker Neo: Dieser neue Compiler für Deep-Learning-Modelle ermöglicht es Kunden, Modelle einmalig zu trainieren und diese überall mit bis zu doppelter Leistungssteigerung auszuführen. Er erstellt Modelle für spezifische Hardwareplattformen und optimiert automatisch deren Leistung. So können sie mit bis zu doppelter Leistung laufen, ohne an Genauigkeit einzubüßen. Dadurch müssen Entwickler nicht mehr ihre Trainingsmodelle für jede einzelne Hardwareplattform manuell optimieren (Zeit- und Kostenersparnis). Amazon SageMaker Neo unterstützt Plattformen wie NVIDIA, Intel, Xilinx, Cadence und Arm sowie beliebte Frameworks wie TensorFlow, Apache MXNet, und PyTorch. AWS wird Neo als Open Source Projekt veröffentlichen.

Neue KI-Dienste bringen Intelligenz in alle Apps, keine Erfahrungen in Machine Learning erforderlich

Amazon Textract (Preview verfügbar):
Amazon Textract nutzt maschinelles Lernen, um praktisch jedes gescannte Dokument sofort zu lesen und Text und Daten präzise zu extrahieren. Hierfür sind weder manuelle Überprüfung oder benutzerdefinierter Code erforderlich. Amazon Textract ermöglicht es Entwicklern, Dokumenten-Workflows schnell zu automatisieren und verarbeitet Millionen von Dokumentenseiten innerhalb weniger Stunden.

Amazon Comprehend Medical: Amazon Comprehend Medical verwendet Natural Language Processing (NLP) für die Verarbeitung von medizinischen Texten. Hierbei handelt es sich um einen hochpräzisen NLP-Service, der mit Hilfe maschinellen Lernens Krankheitszustände, Medikation und Behandlungsergebnisse aus Patientennotizen, klinischen Studien und anderen elektronischen Gesundheitsakten extrahiert. Hierfür sind weder ML-Fachkenntnisse notwendig noch müssen komplizierte Regeln geschrieben oder Modelle trainiert werden. Amazon Comprehend Medical wird ständig verbessert und Kunden zahlen nur für das, was Sie nutzen – ohne Mindestgebühren oder Vorabverpflichtungen.

Amazon Personalize: Amazon Personalize ist ein Empfehlungs- und Personalisierungsdienst, der in Echtzeit funktioniert und auf über 20 Jahre Personalisierungs-Erfahrung bei Amazon.com basiert. Der vollständig verwaltete Service erstellt, trainiert und stellt für praktisch jeden Anwendungsfall nutzerdefinierte, eigene Personalisierungs- und Empfehlungsmodelle bereit. Amazon Personalize kann Empfehlungen machen, Suchergebnisse personalisieren und Kunden für personalisiertes und direktes Marketing segmentieren.

Amazon Forecast: Amazon Forecast erstellt präzise Zeitreihenprognosen. Anhand historischer Daten und zugehöriger kausaler Daten wird Amazon Forecast automatisch benutzerdefinierte, private ML-Prognosemodelle trainieren, anpassen und bereitstellen. Kunden erhalten so mehr Sicherheit darüber, dass sie ihren Kunden die richtige Benutzererfahrung bieten und gleichzeitig ihre Ausgaben optimieren können.
(Amazon: ra)

eingetragen: 16.12.18
Newsletterlauf: 21.01.19

Amazon: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.

- Anzeigen -





Kostenloser Compliance-Newsletter
Ihr Compliance-Magazin.de-Newsletter hier >>>>>>



Meldungen: Unternehmen

  • Analyselösungen für hybride Cloud-Umgebungen

    Veritas Technologies gab die Akquisition von Aptare bekannt, einem Privatunternehmen mit Sitz in Campbell, Kalifornien. Aptare ist Anbieterin von Analyselösungen für hybride Cloud-Umgebungen. Seine offene und erweiterbare IT Analytics Plattform bindet hybride Cloud-Speicher und Backup-Systeme genauso ein wie OpenStack basierende Umgebungen, Software-Defined Speicher und Flash-Infrastrukturen.

  • Performance das wichtigste Auswahlkriterium

    Exasol, Herstellerin von analytischen In-Memory-Datenbanksystemen, wurde in der globalen Dresner ADI-Marktübersicht in den Quadranten Customer Experience und Herstellerglaubwürdigkeit als "Leader" eingestuft. Die Positionierung erfolgte wegen der herausragenden Performance der Datenanalyse-Plattform, deren Verlässlichkeit und Skalierbarkeit sowie der Qualität der angebotenen Beratungsleistungen. Der Marktüberblick wird jährlich herausgegeben von Dresner Advisory Services. Exasol ist zum zweiten Jahr in Folge darin vertreten.

  • Daten & Anwendungen schützen in der Cloud

    Rund 2,7 Milliarden gestohlener Datensätze wurden allein im Januar 2019 im Internet veröffentlicht. Der finanzielle Schaden für die betroffenen Unternehmen ist immens: Die Kosten für ein Datenleck oder einen Hackerangriff belaufen sich laut einer IBM-Studie auf durchschnittlich knapp 3,86 Millionen US-Dollar. Mit der "Sealed Platform", einer sicheren Cloud Computing-Plattform, gibt die TÜV SÜD-Tochter Uniscon Unternehmen und KRITIS-Betreibern nun ein Werkzeug in die Hand, das selbst höchste Anforderungen an Datenschutz und IT-Sicherheit noch übertrifft. Auf der Cloud Expo Europe in London zeigten die Münchner, wie die betreibersichere Plattform die Sicherheit auch in Ihrem Unternehmen auf das nächste Level bringt.

  • Agilität, Flexibilität und Sicherheit in der Cloud

    MTI Technology lädt an vier regionalen Veranstaltungsorten zu interaktiven Executive Workshops mit dem Thema "Hybride Infrastrukturen" ein. Teilnehmern der Workshops bietet MTI eine ideale Plattform, sich herstellerunabhängig über aktuelle Themen zu informieren und auszutauschen. Auf der Agenda stehen die Digitalisierung mit Auswirkungen und Perspektiven, die Entwicklung und Zukunft der IT-Infrastruktur, Cloud Computing-Modelle und deren individuelle Vorteile sowie Anforderungen an ein modernes, flexibles und sicheres Backup/Recovery im Zusammenspiel mit der Cloud. Die MTI Experten Robert Meiners, Practice Lead Cloud Germany, und Sebastian Paul, verantwortlich für das Business Development, leiten durch die Veranstaltungen.

  • Der nächste Schritt: Kombination SD-WAN und 5G

    AT&T setzt "VMware SD-WAN by VeloCloud" ein, um Unternehmen durch die Implementierung von 5G-Funktionen in SD-WAN eine neue Qualität der Netzwerkkontrolle zu bieten. Dies ist eine sehr innovative und ideale Lösung für Unternehmen, die SD-WAN mit einem schnellen, latenzarmen 5G-Netzwerk als primäre oder sekundäre WAN-Verbindungsart in Kombination mit anderen Netzwerkverbindungen nutzen möchten. Vor kurzem hat AT&T das erste mobile 5G-Netzwerk in den USA vorgestellt. Damit Unternehmen weitere Schritte in Richtung 5G gehen und sich für das transformative 5G-Netzwerk rüsten können, sind neue Wege und schnellere Netzwerke notwendig.

  • Mit ITIL 4 in die digitale Zukunft

    ITIL 4 ist da! Vipcon, Serview und BMC werden ab sofort gemeinsam praxisorientierte ITIL 4 Trainings anbieten. Untersuchungen haben ergeben, dass ITIL Best Practice für die ITSM-Anwender und Industrie ist und bleibt. Daher werden viele Kernelemente auch mit ITIL 4 nicht grundlegend verändert, denn diese basieren auf den Erfahrungen von tausenden Experten weltweit. Das Update wird praktische Bezüge für die Unterstützung im Tagesgeschäft haben und die gesamte Leistung nun in Form einer Wertschöpfungskette betrachten. Die Anpassungen und Verbesserungen des ITSM stehen im Vordergrund, vor allem vor den Herausforderungen von Digitalisierung, Cloud und IT Sicherheit.

  • Erweiterung der Public Cloud-Services

    OVH, globale Hyperscale-Cloud-Anbieterin, hat die globale Erweiterung ihrer Public Cloud-Services durch zwei Rechenzentren in der Region Asien-Pazifik (APAC) angekündigt. Mit den Standorten in Singapur und Sydney erhöht sich die Gesamtzahl von sechs auf acht OVH-Public Cloud-Regionen, die sich über vier Kontinente erstrecken. Von der Erweiterung profitieren auch Kunden in Europa, dem Nahen Osten und Afrika (EMEA). Diese können nun zusätzlich zu den bereits bestehenden regionalen Netzwerken von OVH auch Public Cloud-Ressourcen in APAC einsetzen, um ihre weltweite Geschäftsentwicklung voranzutreiben.

  • Compliance-Audits für SaaS-Anwendungen

    Qualys, Anbieterin für Cloud-basierte Sicherheits- und Compliance-Lösungen, hat die Software-Assets von Adya, Inc. erworben. Dank dieser Akquisition kann Qualys künftig Unternehmen jeder Größe die Möglichkeit bieten, ihre Software-as-a-Service (SaaS)-Anwendungen über eine einzige Konsole zu administrieren, die Lizenzkosten für alle SaaS-Anwendungen zu verwalten, Sicherheitsrichtlinien zentral festzulegen und durchzusetzen und sämtliche Aktivitäten mit einem einzigen Tool zu melden und zu auditieren.

  • Datadog übernimmt Madumbo

    Datadog, Anbieterin einer Monitoring- und Analyse-Plattform für moderne Cloud Computing-Umgebungen, übernimmt Madumbo, eine KI-basierte Plattform für Automated Application Testing. Das Madumbo-Team ergänzt den Pariser Forschungs- und Entwicklungs-Standort von Datadog und arbeitet bereits an neuen Produkten, die im Laufe des Jahres auf den Markt gebracht werden.

  • Funktionen für Cloud-Datamanagement

    Veeam Software hat jetzt die Ergebnisse für das Geschäftsjahr 2018 bekannt gegeben. Insgesamt erreichte der Softwarehersteller ein Auftragsvolumen von 963 Millionen US-Dollar, ein Wachstum von 16 Prozent im Vergleich zu 2017. Damit verbuchte Veeam das zwölfte Jahr in Folge ein zweistelliges Wachstum und konnte 48.000 neue Kunden gewinnen. Die Ergebnisse untermauern die führende Position und das Potenzial des Softwareherstellers im Markt für intelligentes Datenmanagement. Dieses manifestiert sich auch in der Großinvestition von 500 Millionen US-Dollar von Insight Venture Partners und dem Investor Canada Pension Plan Investment Board (CPPIB) Anfang Januar.