Sie sind hier: Startseite » Markt » Tipps und Hinweise

In fünf Schritten zum erfolgreichen IoT-Projekt


Verschiedene Bausteine beachten, damit der erfolgreichen Umsetzung des Projekts nichts im Wege steht
"Archive" sorgt für eine kosteneffiziente Langzeitarchivierung der Sensordaten


Von Stefan Ebener, Strategy & Innovation Manager Automotive & Manufacturing bei NetApp

Angefangen bei den Sensoren über die Data-Management-Plattform und Analytics-Software bis hin zur Security gilt es bei der Einführung von IoT-Projekten allein aus IT-Sicht viele verschiedene Bausteine zu beachten. Schematisch lässt sich ein solches Projekt allerdings in fünf Phasen gliedern – bei deren Beachtung der erfolgreichen Umsetzung des Projekts nichts im Wege steht:

>> "Collect": In dieser Phase geht es darum, Sensordaten zu erfassen und sie transportfähig zu machen. Herangehensweisen gibt es viele: Ein sogenanntes Edge Gateway beispielsweise übersetzt die Daten, die ältere Maschinen oftmals in Milliampere ausgeben, und leitet diese anschließend weiter. Ein anderer Weg, die vorliegenden Daten in IP-fähige Informationen umzuwandeln, sind Systeme, die über Webcams Lampen- oder Schaltersignale filmen, dieses Material mittels künstlicher Intelligenz in IP-Informationen übersetzen und dann zur Auswertung weiterleiten. Oder: Die Investition in neuere Maschinen, die bereits komplett IP-fähig sind.

>> "Transport": Hier geht es um die sichere und verlässliche Übertragung der Daten von den Produktionsmaschinen oder Geräten zum Rechenzentrum. Aus den rund 50 verschiedenen Protokollen für die Sensordatenkommunikation ist das passende für die Kommunikation zwischen den Maschinen auszuwählen. Auch wenn einheitliche Standards noch fehlen, hat sich das offene Nachrichtenprotokoll MQTT, kurz für Message Queue Telemetry Transport, weitgehend durchgesetzt.

>> "Store": Bei diesem Schritt werden die Sensordaten gespeichert und für die Analyse bereitgestellt. Dafür eignen sich je nach Einsatzszenario unterschiedliche Technologien. Ist für die Datenanalyse Hadoop im Einsatz, sind leistungsstarke Storage-Lösungen, so genannte Enterprise-Class-Speicherlösungen, empfehlenswert. Als Speicher in Industrie-PCs für Edge Computing kommen in der Regel SSDs zum Einsatz. Stream Analytics, also Echtzeitberechnungen von Datenströmen, benötigen hingegen schnelle Flash-Ressourcen. Hilfreich, um große Mengen an Daten im zentralen Data Lake aufzubewahren, ist zudem ein skalierbarer Cloud-Storage. Wichtig ist darüber hinaus ein Datenmanagement-Betriebssystem, durch das Daten zwischen verschiedenen Speicherlösungen verschoben oder gespiegelt werden können.

>> "Analyze": umfasst die Analyse der Sensordaten. Auch hier gilt es, abhängig vom Anwendungsfall die richtigen Lösungen auszuwählen. Um große Mengen an strukturierten und unstrukturierten Daten aus dem Data Lake zu verarbeiten, eignen sich zum Beispiel das Framework Hadoop und NoSQL (Not Only SQL)-Datenbanklösungen wie Couchbase, MongoDB oder Cassandra. Für Echtzeitanalysen kommen unter anderem SAP HANA oder SAP Business Objects zum Einsatz. In dieser Phase lassen sich überdies die Analyseergebnisse mit dem ERP-System verknüpfen.

>> "Archive": Sorgt für eine kosteneffiziente Langzeitarchivierung der Sensordaten. Ein wichtiger Aspekt dieser fünften Phase ist die regelbasierte, automatisierte Datenklassifizierung. So kann das System Daten nach der gesetzlichen Vorhaltezeit automatisch löschen. Auch das Storage Tiering kommt hier zum Zuge: Bei dieser Methode werden die Daten entsprechend ihrer Zugriffe auf unterschiedliche Speichermedien verteilt. So landen Daten in der Anfangsphase der Archivierung oft zunächst auf schnelleren Systemen, da sie noch häufiger abgerufen werden. Später ruhen sie auf weniger performanten, preiswerteren Speicherlösungen. Auch das Auslagern von Daten in eine Cloud oder der Abzug aus der Cloud sind Themen, um die es in der Archivierungsphase geht. (NetApp: ra)

eingetragen: 12.08.17
Home & Newsletterlauf: 07.09.17


NetApp: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Tipps und Hinweise

  • XLAs: Der Mensch als Maßstab

    Über Jahrzehnte galten Service Level Agreements (SLAs) als Maßstab für gutes IT- und Servicemanagement: Wurde ein Ticket fristgerecht gelöst, war die Aufgabe erledigt. Doch in einer zunehmend digitalisierten Arbeitswelt zeigt sich: Diese Logik greift zu kurz. Effizienz allein entscheidet nicht mehr, ob Mitarbeitende zufrieden und produktiv bleiben. Gefragt ist ein neues Verständnis, das die tatsächliche Erfahrung der Menschen in den Mittelpunkt rückt.

  • Cloud-Souveränität immer stärker im Mittelpunkt

    Mit dem rasanten Fortschritt der digitalen Wirtschaft und dem Aufkommen zahlreicher neuer Technologien - allen voran Künstlicher Intelligenz (KI) - stehen europäische Entscheidungsträger vor einer neuen Herausforderung: Wie lässt sich ein innovatives Ökosystem regionaler Cloud-Anbieter schaffen, das sowohl leistungsfähige Lösungen als auch ausreichende Skalierbarkeit bietet? Und wie kann dieses Ökosystem mit internationalen Anbietern konkurrieren und zugleich die Abhängigkeit von ihnen verringern? Politik, Regulierungsbehörden, Forschungseinrichtungen und Industrievertreter in Europa konzentrieren sich darauf, wie der Kontinent seine Position im globalen Wettlauf um Cloud-Innovationen verbessern kann - ohne dabei die Kontrolle, Autonomie und Vertraulichkeit über europäische Daten aufzugeben, die andernfalls womöglich in anderen Märkten gespeichert, verarbeitet oder abgerufen würden.

  • Vom Nearshoring zum Smart Sourcing

    Aufgrund des enormen IT-Fachkräftemangels und der wachsenden Anforderungen von KI und digitaler Transformationen benötigen Unternehmen heute flexible und kosteneffiziente Lösungen, um wettbewerbsfähig zu bleiben. Für die Umsetzung anspruchsvoller Innovationsprojekte mit hohen Qualitätsstandards entscheiden sich deshalb viele Unternehmen für Nearshoring, da dieses Modell ihnen Zugang zu hochausgebildeten IT-Fachkräften in räumlicher und kultureller Nähe ermöglicht.

  • Sechs stille Killer des Cloud-Backups

    Cloud-Backups erfreuen sich zunehmender Beliebtheit, da sie auf den ersten Blick eine äußerst einfache und praktische Maßnahme zu Schutz von Daten und Anwendungen sind. Andy Fernandez, Director of Product Management bei Hycu, nennt in der Folge sechs "stille Killer", welche die Performance von Cloud-Backups still und leise untergraben. Diese werden außerhalb der IT-Teams, die täglich damit zu tun haben, nicht immer erkannt, können aber verheerende Folgen haben, wenn sie ignoriert werden.

  • Datenaufbewahrungsstrategie und SaaS

    Die Einhaltung von Richtlinien zur Datenaufbewahrung sind für Unternehmen unerlässlich, denn sie sorgen dafür, dass wertvolle Informationen sicher gespeichert und Branchenvorschriften - egal wie komplex sie sind - eingehalten werden. Diese Governance-Frameworks legen fest, wie Unternehmen sensible Daten verwalten - von deren Erstellung und aktiven Nutzung bis hin zur Archivierung oder Vernichtung. Heute verlassen sich viele Unternehmen auf SaaS-Anwendungen wie Microsoft 365, Salesforce und Google Workspace. Die Verlagerung von Prozessen und Daten in die Cloud hat jedoch eine gefährliche Lücke in die Zuverlässigkeit der Datenaufbewahrung gerissen, denn die standardmäßigen Aufbewahrungsfunktionen der Drittanbieter entsprechen häufig nicht den Compliance-Anforderungen oder Datenschutzzielen.

  • Lücken der SaaS-Plattformen schließen

    Die zunehmende Nutzung von Software-as-a-Service (SaaS)-Anwendungen wie Microsoft 365, Salesforce oder Google Workspace verändert die Anforderungen an das Datenmanagement in Unternehmen grundlegend. Während Cloud-Dienste zentrale Geschäftsprozesse unterstützen, sind standardmäßig bereitgestellte Datenaufbewahrungsfunktionen oft eingeschränkt und können die Einhaltung der Compliance gefährden. Arcserve hat jetzt zusammengefasst, worauf es bei der Sicherung der Daten führender SaaS-Anbieter ankommt.

  • Nicht mehr unterstützte Software managen

    Von Windows bis hin zu industriellen Produktionssystemen: Wie veraltete Software Unternehmen angreifbar macht und welche Strategien jetzt nötig sind Veraltete Software ist weit verbreitet - oft auch dort, wo man es nicht sofort vermuten würde. Beispiele für besonders langlebige Anwendungen sind das SABRE-Flugbuchungssystem oder die IRS-Systeme "Individual Master File" und "Business Master File" für Steuerdaten, die seit den frühen 1960er-Jahren im Einsatz sind. Während solche Anwendungen ihren Zweck bis heute erfüllen, existiert daneben eine Vielzahl alter Software, die längst zum Sicherheitsrisiko geworden ist.

  • Wie sich Teamarbeit im KI-Zeitalter verändert

    Liefertermine wackeln, Teams arbeiten unter Dauerlast, Know-how verschwindet in der Rente: In vielen Industrieunternehmen gehört der Ausnahmezustand zum Betriebsalltag. Gleichzeitig soll die Zusammenarbeit in Produktion, Qualitätskontrolle und Wartung immer schneller, präziser und vernetzter werden. Wie das KI-gestützt gelingen kann, zeigt der Softwarehersteller Augmentir an sechs konkreten Praxisbeispielen.

  • Vom Workaround zum Schatten-Account

    Um Aufgaben im Arbeitsalltag schneller und effektiver zu erfüllen, ist die Suche nach Abkürzungen Gang und Gebe. In Kombination mit dem technologischen Fortschritt erreicht die Effizienz menschlicher Arbeit so immer neue Höhen und das bringt Unternehmen unwissentlich in eine Zwickmühle: Die zwischen Sicherheit und Produktivität. Wenn ein Mitarbeiter einen Weg findet, seine Arbeit schneller oder besser zu erledigen, die Bearbeitung von Zugriffsanfragen durch die IT-Abteilung aber zu lange dauert oder zu kompliziert ist, dann finden Mitarbeiter oftmals "kreative" Lösungen, um trotzdem weiterarbeiten zu können. Diese "Workarounds" entstehen selten aus böser Absicht. Allerdings stellen sie gravierende Sicherheitslücken dar, denen sich viele Beschäftigte und Führungskräfte nicht bewusst sind.

  • KI in der Cloud sicher nutzen

    Keine Technologie hat die menschliche Arbeit so schnell und weitreichend verändert wie Künstliche Intelligenz. Dabei gibt es bei der Integration in Unternehmensprozesse derzeit keine Tür, die man KI-basierter Technologie nicht aufhält. Mit einer wachsenden Anzahl von KI-Agenten, LLMs und KI-basierter Software gibt es für jedes Problem einen Anwendungsfall. Die Cloud ist mit ihrer immensen Rechenleistung und Skalierbarkeit ein Motor dieser Veränderung und Grundlage für die KI-Bereitstellung.

Wir verwenden Cookies um unsere Website zu optimieren und Ihnen das bestmögliche Online-Erlebnis zu bieten. Mit dem Klick auf "Alle akzeptieren" erklären Sie sich damit einverstanden. Erweiterte Einstellungen